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ABSTRACT
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Nonlinear functionals of unknown density f, such as the integral of the square of f, T(fl :

and the Shannon entropy

IllI ' -I I log I <Ix

are estimated using kernel estimates fn of the probability density f. It is shown that the strong
consistent property of the estimates of these functionals follows from the conist~ncy property of· fn.
Illustrations of the convergence are given using simulated density functions.
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i. Introduction

Some nonlinear
functionals of density are of
practical. interest in
nonparametric statistical
inference. In comparing two
statistical procedures, the
asymptotic relative efficiency
(ARE) is used. This ARE
depends on the efficacy
parameters defined in terms of
the underlying probability
density of 'the data. One of
these efficacy related
functionals is T(f) - J f 2dx.

which is included in Pitman
asymptotic efficacy of tests
based on Wilcoxon scores. The
functional T(f) also appears
in the standardizing constant
of test statistics in linear
models. Thus, it is important
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to have a consistent estimator
to standardize certain test
statistics. The Shannon
entropy I(f) =J-f logf dx for

both discrete and absolutely
~ontinuous distributions has
applications to information
theory and engineering
sciences.

Demetriev and Tarasenko
(1972), Schuster (1974) Ahmad
(1976), Ahmad and Lin (1976)
and Ching and .Serfling (1976)
have shown convergence of
variou~ estimates of. the
functionals to T(f) and l(f).
In this paper, we will .show a
consistent estimate for T(f)
and l(f) using a basic lemma
based on the asymptotic
unbiasedness o£ the kernel
estimate fn as estimator of f.
This consistenc~ result is
graphically illustrated using
simulated density function of
a mixture of two. normally
distributed populations. Two

cases of kernel estimators of
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density are presented using'
Epanechnik9v . and normal
density functions.

K(t) = (3/4)(1-(1/5)t2)/f5

for ItI < 5,
o otherwise.

2. Ke~nel Density Est~tes

Motivated by the notion
of histograms, Rosenblatt
(1956) and Parzen (1962)
worked on kernel density
estimates. In the fi~st

detailed explication of kernel
estimate, Parzen considered
as an estimator for an unknown
density f(x),

state without
asymptotic

fn due to

(L 1)
,,/ -, ..

f(x) = f~(x) =

Below, we
proof the
unbiasedness of
Parzen.

Lemma 1. (Parzen).The
estimates defined by (1.1) are
asymptotically unbiased at all
points. x at which the
.probability density function
is c9ntinuous if the function
K( t) . satisfies all the
conditions in (1.2) and (1.3)
Lim an = O.
n->co

•

1. . ~ __1. K [z.::-.X.:1.] =
n J.=l an an 3. St~ong Consistency of T(fn)

and I{fn)'

In this paper, we show
the strong consistency
property of the estimates
T(fn) = J fn 2 dx and r(fn) = •

the

the

and.

for

=. J f 2 dx
ref) = J -f .log f dx,

respectively, using
following lemma ..

J - fn logfn dx

functionals T(f)

and lim It K(t)! = 0
y->m

with K, the kernel function,
satisfying

(1.2) K(t) ~ 0, sup IK(t)l<m,.J:...K( t ) dt = 1

(i) the stand~rd normal
1 2

K(t) = -- e- t /2

.f2n

(ii) the triangUlar function;
K(t) = 1 ':'Itl for It I < 0,

0, otherwise and

( iii) the Epanechn'Lkov
function; ."t

L

Some choice
K,· may
following:

for the function
come from' the

Lemma 2. Let (Q, A , P) be a
probability space and {Zn} be
a sequence of random
variables that are in L1(Q,
A, Pl. Let {Zn} be uniformly
bounded, i.e., \Zn(X)1 ~\ M
for all n and for all x.
Suppose Z is in L1(Q, A , P)
and has compact support, then
Zn --> Z a.s. [PJ as n --> co
if and only if Zn .converges to
Z inL1.

Proof. Let Zn, be a sequence
of r andon. var-LabLee . . Zn •
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if and only if (1.5) holds.
Hence

if and only if (1.4) is true .
Also,

Now, by the dominated
convergence theorem (DCT)

converging to Z in L1 implies,
~y definition, that

the

strong
for T(fn)
foliowing

f21 = 0 .lim E Ifn2

n->co

= E lim Ifn2 - f21
n->co

lim E Ifn2 - f2!
n->co

Proof. By the dominated
convergence theorem {DCT),

Theorem 2. Under
conditions in Theorem 1,

We formalize the
consistency results
and I(fn) with t~e

theorems:

( 1. 5)

(1. 4)

21 - 0 -3.• 5. [PJ
( 1. 6)

lim IZt1
I

n->O)

lim EIZn - ZI = 0
n->co

I lim 1 2h - Zl dP'= 0
G

•

Zn --) Z a.s. rPJ

if and only if
satisfied.

(1. 7)

(1.13) .; c'..L ...,

= E Ilim f'tl 2 - f21
n->ro

= E ! (1im fn)2 - f21
n-->co

r f 2 dx I <
J

i b f n2 d x
L.

lim E rb I fli 2 - f 21dx
I ,

n -.><:0 i
6.

.- lim fb(E I fn 2 - f 2 1 )dx •--
n->cr.> J E.i.

lim E

= 0 by corollary 1 .

by Fubini's theorem

Proof.

Theorem 3. Under the
conditions in Theorem'1. T(fn)
converges to T(f) in L1.

1.LemmaByProof.
lim E I·L,... fl '= (). In v i ew o r
Lemma . 2 the ke r-ne l de ne i.t v
estimates in converges almo2t
surely to f.

Theorem 1. For a eu i t.::tble
choice of the kern~l function
K and smoothing pa.r.'3.meter:in
satisfying the Psrzen
condi t ions in . ( 1.:2 )a.nd
assuming that f Le bC)"'Jndl~d.

then fn converges tc f with
probability 1, if the ~ernel

density estimates {fn(XI1 in
(1.1) are uniformly bound~rl.

that is, I :[n(XII ..::: 1'1 £'::'H~ ell
n , for .9.'11

1

:,: . • .

•

Let T(fnl lim E Ifn2-f2Idx,
n->a:>

•

r(fnJ =I -fn 16g f t1dx be a

kernel based estimates fo~
T(f)' and' I(f), respectively,
where in is ,the kernel
estimate satisfying the Parzen
condition in' (1.2) and (1.3).

by the domi.na t ed
convergence theorem

= a ,by Theorem 2.

Theorem 4. Under the
conditions in Theorem 1, T(fn)
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lim E Ifn log fn - flog fl=O
n->m

Theorem 5. Under the
conditions in Corollary 1,

Proof. By the dominated
convergence theorem (OCT),.'

P~oof. Applying Lemma 2 for
Zn = T!fn) and w~th the use
of Theorem 2; Theorem 3 is
proved.

•

the
l(fn)
with

7. Under
in' Theorem 1,
to ref)
1.

Finally, Theorem 7, will show
the strong consistency of
I (fn) .

4. Illustrations on the' Strong
Consistency Results of T{fnJ
and I(fu)

Theorem
conditions
coverges,
probability

Proof. We apply Lemma 2 for
Zn = I (fn) .and use Theorem 6.

withT(f)converges to
probabi lity 1.

Proof.

lim EI l(fn)~l(f)1 s
n->=

lim E Ifn log fn -. flog fl =
n->m

.,

•

4 _2 _ Analysis of Reault.e

Numerical integration was
resorted to approximate J f 2dx

and J -f log f dx over the

region -6 to 7.2. The
approximation yielded 0,81795
and +0.43812 for J f 2dx and

J -f log fdx, respectively.

To demonstrate the'
results empirically, a
simulation from a bimodal
distribution was made. Box
Muller's method was used to
generate data points from a
mixture of two normals: N(-3.
1) with weight 0.3 and N(5, 1)
with weight 0.7~ For a fixed
bandwidth an and sample size
n, estimates of the
functionals of f'for 50 data
points with equal increments
in the range -6 to 8 were then
computed using normal and
Epanechnikov kernels. an and
n were mad~ to vary to
demonstrate their effect on
the rate of convergence; n~1/6

and n-1/4 were chosen for ~he

bandwidth an, and 50, 100, and
200 for the 'sample size n.

4.1. S~lation Procedure

, by

by Theorem 4.- 0

=J (lim E IfnlQgfn-flOgfldx,
n->m

by DCT

= EJ lim fn log fn - flog fl
n-:>oo

= 0

= lire r Elfn log fn-f logfldx,
'n->oo j

by Fubini's theorem

E lim lfn log fn -f log ft
n->m

Theorem 6. Under the
conditions in Theorem 1, l(fn)
converges to l(f) in L1.

=Elf log f - flog fl
corollary 1
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Approximation was to get
Ifn2dX and I-fn log f~dx, the

results ~f which are shown
below.

Using\Std Ncrmal
an

iI

Table 1. Values of J fn2 dx

ij;ing Epanechnikcv
an

-smaller bandwidth. Table 2
p'?es.ents an unstable pattern
of conver-gence of the integral'
of the estrmates. Both kernels
provide increasing' estimates
of the integral irrespective
of . the ~andwidth used~

However, when the bandwidth is
increased. marked decrease in
instability is observed. In
this case, the Epanechnikov
provides a more cQnservative
e e t i.ma t.e .

" :;-1/6 0- 1/4 n- 1/ 8 n- 1/ 4..
50 0.119738 0:129727 0.130017 0.130017

100 0.109859 O. H6749 0.115843 0.115843

2~O 0.104161 0.109929 0.108026 0.108028

Using Epanechnikc~

3r,

..
Table 2. Values of J

fndX.

Using Std Normal
an

--fn log

A look at the graph can
help explain the reason for
the instability. The integral
converges more rapidly in the
interval (-6, 2.4) than in the
interval (2.4. '7.72)' whi.ch
accounts for the greater mass
of 1 (in) , hence the
instability of the estimate.
Note also that since the
logarithm function has
decreasing derivative, this
type of functional estimate
converges much slower than a
po Lyriom i a Lvtvpe , which has ..::l.n
increasing derivative.

n n-1I6 n-1I4 0- 1/ 6 n-1/ 4

50 0.84510 0.80997 0.81108 0.Rl108

·11)0 0.88113 (l.e517~ '0.84973 0.84973

200 0.91825 0.eB521 O. S~t?B 0.ee5~1

From. Table 1. it is
evident that the integral of
the estimates 20nverges to
the t~ue value both for the
standard nQrmal ~nd

Ep-=lnf::chnikov k e r-ne I:=-; . For t.he
e tande r-d normal ke rne.L, the
rate of convergen8e lncreases
as the ban~~idth decreases.
In the case of the
Epanechnikov kernel, the,rate
of convergence is invariant .

.Hence it is b:=tter to use the
Epa.nf>::hn Lkov ke r-ne 1 for

For purpos~s of
'estim3.ting r f 2 d x . a. sample

I

J
si3e of 200 is recommended
w i, th smaller baridw i d t.h for the
6tandard normal ke~nel and
larger bandwidth for the
Epanechnikov kerne 1'. More
points should be ~sed in
estimating r -f log fdx to

j
caver up the slow convergence
between 2.4 to 7.72.
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