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ABSTRACT

Nonlinear functionals of unknown density f, such as the integral of the square of

’ f2dx and the Shannon entropy

I(f) = - } flog fdx

are estimated using kernel estimates fa of the probability density f.

£, 2f) =

It is shown that the strong

consistent property of the estimates of these functionals follows from the conlstency property of - fa.
I1lustrations of the convergence are given using simulated density functionms.
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1. Introduction

Some nonlinear
functionals of density are of
practical . interest in
nonparametric statistical
inference. In comparing two
statistical procedures, the

asymptotic relative efficiency
(ARE) is used. This ARE
depends on . the efficacy
parameters defined in terms of
the underlying probability

density of ‘the data. One of
these efficacy related
functionals

is T(f) = I f2dx.
which is included in Pitman
asymptotic efficacy of tests
based on Wilqoxon scores. The
functional T{(f) also appears

in the standardizing constant
of test statistics in linear
models. Thus, 1t is important
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a mixture

to have a consistent estimator
to standardize certain test
statistics. The Shannon
entropy I(f) = J—f logf dx for

both discrete &and absolutely
continuous distributions has
applications to information
theory and engineering
sciences.

and Tarasenko
(1972), Schuster (1974) Ahmad
(1976), Ahmad and Lin (1976)
and Ching and Serfling (1976)
have shown convergence of
various estimates of the
functionals to T(f) and I(f).
In this paprer, we will .show a

Demetriev

consistent estimate for T(f)
and I(f) using a basic lemma
based on the asymptotic
unbiasedness of the kernel

‘estimate fn as estimator of f.

This consistency result is
graphically illustrated wusing
simulated density function of
of two normally
distributed populations. Two

cases of kernel estimators of



density are
Epanechnikov - and
density functions.

normal

2. Kernel Density Estimates

'Motivated by the notion
of histograms, Rosenblatt
(18586) and Parzen (1962)
worked on kernel density
estimates. In the
detailed explication of kernel
estimate, Parzen considered
ag an estimator for an unknown
density f(x),

1/-\\
(1.1) f(x) = fn(x) =
n —
1l 2 _1 K Ix=xsl =
n izl an L an

- 8n a

Jw -3 K [x:y dFn(y)

with K, the kernel function,
~satisfying

(1.2) K(t) =2 0, sup |K(t)|<m,
= K(t)dt = 1

—cn

lim
y->o

and |t K(t)| =0

Some choice for the <function

K, may come from the
following:
" (i) the standard normal
i . 1
K(t) = -- e-t 72,

421
(ii) the triangular function;

K(t) = 1 ;,1t| for |t] < O,
0, otherwise and

(iii) the Epanéchniﬁbv
function; T

2

presented using-

first -~

K(t) = (3/4)(1-(1/5)t2)/{5
‘ _ for |t| < 5,
0O otherwise.

_ Below, we state without
proof the asymptotic
unbiasedness of fn due to
Parzen.

Lemma 1. {Parzen). ‘The
estimates defined by (1.1) are
asymptotically unbiased at all
points., x °~ at which the
probability- density function
is continuous if the function
K(t) - satisfies all the
conditions in (1.2) and (1.3)
lim an = O.

n->o

3. Strong Consistency of T(fn)
and I(fm)-

In this paper, we show
the strong consistency
rroperty of the estimates

T(fn) = j fn2 dx and I(fn) =

j - fn log fn dx for the
functionals T(f) i‘j f2dx and
I(f) = J -f log f dx,

respectively,
following lemma. .

using the

Lemma 2. Let (Q, A, P) be &
probability space and {Zn} be
a sequence of random
variables that are in L1(Q,
A, P). Let {Zn} be uniformly

bounded, i.e.,
for all n
Suppose Z

IZn(X)l_ = M

and for all x.
is in L3(Q, 4 , P)
and has compact support, then
Zn --> Z a.s. [Pl as n --> o
if and only if Za converges to
Z in L. ' '

Proof. Let Zn Dbe a sequence
of randon. variables. . Zn



N

converging to Z2 in L1 implies,
by definition, that

lim E|{Zn - 2] = 0O (1.4)
n->w
Now, by the dominated
convergence theorem (DCT)

J lim |Zh -4 dP =0 (1.5)
o

if and only i1f (1.4) is true.
Also,

lim {Za - 2 = O 3.8. [P}
n->m (1.6)

if and only if (1.5) holds.

Hence

Zan —-> Z a.s. [P] (1.7)

if and only if (1.6) is-
satisfied.
Theorem 1. For a =uitable
choice of the kern=l function

K and smoothing parameter an
satisfying the Parzen
conditions in (1. and
assuming that £ s *ﬁdnﬂwd

then fn converges to £ with
probability 1. if thﬁ kernel
density estimates {fa{x!! in
(1.1} are unitformly bounded,
that is, [|fa(x)] = M for 211
n, for all ~. '

Proof. By lemms 1.
lim E ! £n - fl = 0. In view of
Lemma % the kernel density
gstimates fn converges almost
surely tec f.

‘Let T(fn) = f fn2dx . and

IT(fn) :-{ -fa lbg tadx ke a
kernel based esti
T(f£) and I(f), rest
where fn is th

-estimate satisfying the Parzen

condition in- (1.2) and (1.3).

We formalize the strong
consistency results for T(fn)
and I(fn) with the following
theorems:

Theorem 2. Under the
condipions in Theorem 1,

lim E |fa2 - £2| = O

n->

Proof. By the dominated
convergence theorem (DCT),

lim E |fn2 - £2|

n-—-o>m

E lim
n->o

|£n2 - £2]

|lim  fa2 - £2|

n-—>a

E g(lim fn)2 - f2|

n-->w@

O by corollary 1.
Theorem 3. Under the
conditions in Theorem 1. T(fn)
converges to T(f) in L.

Proof.
lim E | (Pfn2dx - ( f2dx | <
n-—->x J e

.lim E fb ifnz - fZ!dR

n-.>o Ja

lim [®(E | fa2-£2|)dx.
n->o Jg

by Fubini s theorem

A

Jb lim E | fn2-£2]dx,

& nN—>w

by the dominated
convergence theorem

0 ,bv Theorem 2.

Theorem 4. Under the
conditions in Theorem 1, T( a)
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converges to T(f) with
probability 1.

Proof. Applying Lemma 2 for
Zn = T(fan) and with the use

of Theorem 2; Theorem 3 is
proved.
Theorem 5. Under the

conditions in Corollary 1,

lim E | fn log fn - f log £}=0

n—->o

Droof. By the dominated
convergence theorem (DCT), .

lim E |fn log fn - f log f} =

n->o

E lim | fn log fn - £ log f[

n->o

E|lim fn log fa - f log f|

n-—->w

= ng log £ - £ log f| , by
corollary 1

=0

Under thé
I(fn)

Theorem 6.
conditions in Theorem 1,
converges to I(f) in L.

Proof.

lim E|I(fa)=I1(f)] <

n—>w

lim E J!fn log frndx~f log f]dx

n—>wo

= lim [
n->» J
by Fubini’s theorem

Elfn log fn-f logf|dx,

J'(Iim E |fnlogfan-flogf|dx,
n->o :
by DCT

=0 by Theorem 4.

Finally, Theorem 7, will show
the strong consistency of

I(fn).

Theorem T. Under - the
conditions in Theorem 1, I(fn)
coverges. to I(f) with

probability 1.
Proof. We apply Lemma 2 for

Zn = I(fn) and use Theorem 6.

4. Illustrations on the Strong
Consistency Results of T(fwn)
and I(fn)

4.1. Simulation Procedure

To demonstrate the

results empirically, a
simulation from a bimodal
distribution was made. Box-
Muller s method was used to
generate data points from a
mixture of two normals: N(-3,

1) with weight 0.3 and N(5, 1)
with weight 0.7. For a fixed
bandwidth an .and sample =size
n, estimates of the
functionals of f for 50 data
points with equal increments
in the range -6 to 8 were then
computed using normal and
Epanechnikov kernels. an and
n were made to vary to
demonstrate their effect on
the rate of convergence; n—-1/8
and n-1-4 were chosen for the
bandwidth an, and 50, 100, and
200 for the ‘sample size n.

4.2. Analysis of Results

. Numerical integration was
resorted to approximate J f2dx

and J -f log £ dx over the

region -6 to 7.2. The
approximation yielded 0.81795
and +0.43812 for I f2dx and

J -f log fdx, respectively.



results

Approximation
ffnzdx and [

~

of

which

wWas
£ log fadx,

to

are

Table 1. Values of I trn2dx

Using:Std Normal

an

-Peing Epanechnikev

n-176
118738
0.109823

0.10416!

p-1/4
0.128727
0. HE4?
g.108

829

<>

n-1/8

130017

115843

fndx.

Table 2. Values of j ~-fn log

Using Std Normal

Using Epanechniker

andard

gn

n'l/e n-l/‘ n'l_/s

0.84510 0 80937 0.81:08

0.88113  (.B5175  70.84973

0.91825  0.6A521  (.38€78
From . Tzable 1., it is
ident that the integral of
estimates convereges Lo
true value both for the
normal yndd
‘1nPPhanﬁ\ kernels.  For the
normal kernel the
convergenoe inc- ses
% bandwidth  decr e,
the CHEE ot the

Phbnlrﬁ\ k_ the:

invariant.
to uzse the

nel

smaller bandwidth. Table 2

presents an unstable pattern
of convergence of the integral
of the estimates. Both kernels
provide increasing estimates
of the 1integral irrespective
nf . the bandwidth used.
However, when the bandwidth is
increased. marked decrease in
instability is observed. In
this «¢ase, the Epanechnikov
rrovides a more conservative
uwlmate.

A look at the grarh can
help explain the reason for
the instability. The integral
converges more rapidly in the
interval {-6, 2.4) than in the

interval (2.4, 7.72) which
aczounts for the greater mass
of 1{(fn), hence the
instability of the estimate.
Mote also that since the
logarithm functien hasz
dpcreasing derivative, this

type of functional estimate

converges much =loweér than a
polynomial type. which has an
increasing derivative.

For purposes of

‘estimating [ f2dx. a sample

d

size of 200 is recommended
with =smaller bandwidth for the
standard normal kernel and
larger  bandwidth for the
Epanechnikov  kernel. More
—- points  should be used in

estimating j -f log fdx to

cover up the slow convergence
ketween 2.4 to 7.72.



